# Reining in Anxiety:

# Aviva Vincent, PhD, LSW Veterinary Social Worker





Cognitive-behavioral therapy & adaptive horseback riding

Horses and Humans Research Foundation



## Reining in Anxiety

 Reining in Anxiety is an adaptive riding program developed by a team of researchers, clinicians, and equestrian specialists derived from evidence-based therapies for youth with mild to moderate anxiety.

 RiA was pilot tested in a randomized trial in NYC (Hoagwood et al., 2021) • Youth receiving RiA showed significant improvements over the control group in anxiety symptoms and emotional regulation.

- Replication study Research Questions:
  - RQ1: Are outcomes of youth receiving RiA consistent with results from the initial trial?
  - change over time for riders, volunteers, and horses? Are they consistent with self-report measures?

• RQ2: Do saliva measures of cortisol and oxytocin

• RQ3: Was the intervention delivered with fidelity?

#### **Instructor Manual REINING IN ANXIETY**



Adaptive Horsemanship Groups for Youth with Anxiety or Trauma

## Ride

Strategies skills for managing

To build confidence, self efficacy, and self-regulation



| Learn                             | Practice                                                       |
|-----------------------------------|----------------------------------------------------------------|
| egies and<br>for<br>aging anxiety | Strategies and<br>skills and use<br>them to rein in<br>anxiety |

#### Methodology: Saliva Sampling

- Need to include physiological indicators to assess al., 2019; Ng, 2021)
  - Saliva sampling is minimally invasive, accurate, and easy to collect (Salimetrics, 2021) • Supplies are widely available (Tvarijonaviciute et al,
  - 2020)
  - Cortisol most commonly studied salivary analyte (Pendry & Vandagriff, 2020).
- Saliva sampling is feasible in assessing outcomes for both horses and participants in past HAI trials (Contreras-Aguilar et al., 2019). • A modified bit, instead of a cheek swab, may prioritize horses' welfare.
- Funding: Dr. Kimberly Hoagwood, Department of Child Psychiatry NYU, Unrestricted funds/Gift; Salimetrics LLC

# mechanisms of change (Esposito et al., 2011; Griffin et

#### **Collecting Saliva during COVID-19... Parent Expectations: Saliva Collection**

## What to Expect When Participating in our m Reining in Anxiety A research partnership between Fieldstone Farm and New York University

What: A new riding program for kids 6-17 with anxiety Why: To test whether therapeutic riding (THR) + cognitive behavioral therapy (CBT) reduces anxiety When: March 2021 through May 2021 Where: Fieldstone Farm Therapeutic Riding Center Cost: Participation in this riding program is free

#### **About this Program**

In Fall 2019, Fieldstone Farm began a research partnership with New York University's, Department of Child & Adolescent Psychiatry to explore ways therapeutic riding could improve children's mental health.

NYU Langone Health

#FieldstoneSTRONG

#### **Reining in Anxiety Participant Expectations:**

#### FUN FACT: SPIT KNOWS!

Human and horse spit (saliva) can tell us a lot about how the body reacts to anxious or stressful situations, including whether THR + CBT reduces stress hormones!

Parents & youth attend the full 10-week program

 Parents & youth complete written/electronic screening assessments, guided by Fieldstone Research Assistants

• Youth provide a saliva sample (it's your chance to spit!) before and after Sessions 1, 4, 7, and 10;


 Saliva samples will be collected from youth by trained Fieldstone Research Assistants in a non-invasive manner;

 Youth spit into a test tube that is sealed and sent for analysis to measure stress hormones (cortisol, alpha-amylase, and oxytocin); all samples are confidential.

## Methods: Preliminary Testing

- Modified bit was created based on Contreras-Aguilar's design (Contreras-Aguilar et al., 2019)
- 8 horses involved in the pilot study had two saliva samples collected in quick succession: one using cheek swab, and one using modified bit.











Vincent, A., Peth-Pierce, R. M., Morrissey, M. A., Acri, M. C., Guo, F., Seibel, L., & Hoagwood, K. E. (2021). Evaluation of a Modified Bit Device to Obtain Saliva Samples from Horses. Veterinary Sciences, 8(10), 232

## Modified Bit

#### Results

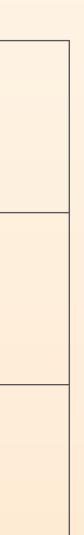


- saliva collected).
- (p=.09), but bit was adequate for valid analysis.
- No significant difference in oxytocin.

## Lonclusions

- Bit method viable, but may need to be adjusted.
- Further testing warranted.

| <b>lethod</b> | n | Volume             | Oxytocin            | Cortisol          |
|---------------|---|--------------------|---------------------|-------------------|
| cheek Swab    | 8 | 1187.50 µL         | 129.99 pg/mL        | 1.04 µg/dL        |
| Bit           | 7 | 587.50 µL          | 128.36 pg/mL        | 0.29 µg/dL        |
| valid for an  |   | c. 7 of 8 hit augh | a valid for analyzi | c (ono involid du |


• All 8 cheek swabs were valid for analysis; 7 of 8 bit swabs valid for analysis (one invalid due to insufficient volume of

• Alpha-amylase not detected in any of the 15 viable samples.

• Average volume collected by swab was higher than average volume collected by bit, with trending significance

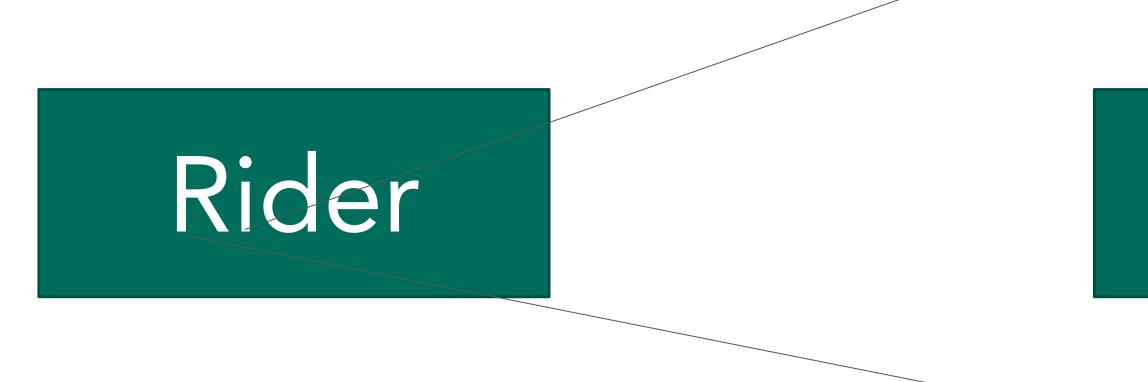
• Cortisol levels significantly higher in swab than bit (p=.00), but bit adequate for valid analysis.

• Modified bit is usable for measuring horse cortisol and oxytocin levels, and may be useful for triangulating with self-report measures of anxiety and stress in youth.



## Methods, Measures and Demographics

#### STAGE


#### Screening Measure (2 min)

Assessment Measures from car (15 min)

#### Saliva (5 min)

Assessment measures of instru volunteers

## Synchronous Saliva Sampling in Reining in Anxiety



Collected samples from 3 groups based on theory that horses, as prey animals, are attuned to and reflect back emotional state of those around them (Wilson et al., 2017).

|                  | MEASURE                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Generalized Anxiety Disorder, 2 Items (GAD-2)<br>The Children's Global Assessment Scale (CGAS).                                                                                                                                                                                                                                                                                                  |
| aregiver & child | Sociodemographic Questionnaire<br>The Screen for Child Anxiety Related Disorders (SCARED<br>Self-Efficacy Questionnaire for Children,<br>Center for the Study of Animal Wellness (CSAW)<br>Adverse Childhood Experiences Questionnaire (ACE-Q)<br>Emotion Regulation Checklist<br>Children's Sadness Management Scale<br>Anxiety knowledge questionnaire<br>Caregiver satisfaction questionnaire |
|                  | 1mL pooled saliva before and after lesson                                                                                                                                                                                                                                                                                                                                                        |
| uctors &         | Instructor and volunteer sociodemographic questionnair<br>Fidelity checklists<br>Instructor satisfaction                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                  |



Volunteer

# Caregiver gender

Youth participants

Child age

Child gender

Descriptives

| Disorder, 2 Items (GAD-2)           |
|-------------------------------------|
| al Assessment Scale (CGAS).         |
| Questionnaire                       |
| Anxiety Related Disorders (SCARED)  |
| onnaire for Children,               |
| v of Animal Wellness (CSAW)         |
| Experiences Questionnaire (ACE-Q)   |
| Checklist                           |
| Management Scale                    |
| questionnaire                       |
| on questionnaire                    |
| efore and after lesson              |
|                                     |
| teer sociodemographic questionnaire |
|                                     |
| n                                   |

| N OR MEAN | % or SD   |
|-----------|-----------|
| 39        |           |
| 11.51     | 2.8       |
| 19 M/20 F | 48.7/51.3 |
| 8 M/31 F  | 20.5/79.5 |

## RQ1: Fieldstone Farm Outcomes

- There was a significant improvement in emotional ERC (Plot 2).

#### Measure

Pre/post change in ERC

**Distribution of CSAW Scores** 

SCARED score

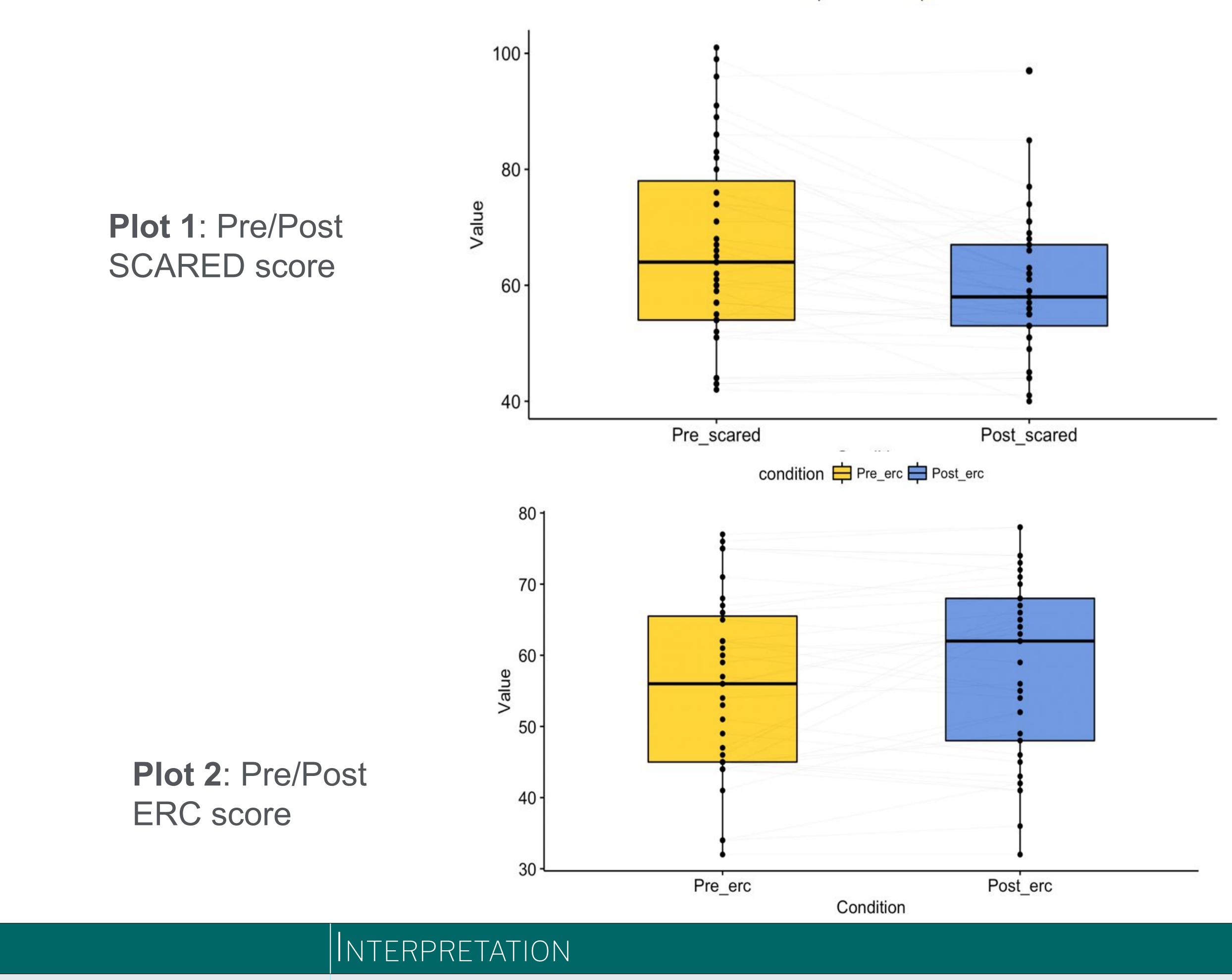
ERC

SEQ-C

• There was a significant difference in anxiety levels at posttest vs pre-test in anxiety symptoms using Screen for Child Anxiety Related Disorders (SCARED) (Plot 1).

regulation at posttest vs. pre-test as measured by the

 No significant changes to self-efficacy as measured by the Self-Efficacy Questionnaire for Children (SEQ-C).


#### Results

Significantly differed by race (no gender) p = .034.

Consistent range: 66-119, 70-119 At the low end, the range varies

The result shows that the mean (pre-post) is 6.03 ((p=0.001)

The result shows that the mean (pre-post) is -2.49 (p=0.033). The result shows that the mean (pre-post) is -1.95. The p-value of the test is 0.07 (p



|                                      | INTERPRETATION                       |
|--------------------------------------|--------------------------------------|
| ot by age or                         |                                      |
| l9, 55-119, 69-119.<br>by 15 points. | Consistent over 4                    |
| of the differences                   | The average sum decreased after ir   |
| of the differences                   | Total scores signition intervention. |
| of the differences                   | Not enough evide post SEQ-C score    |
| p= 0.05).                            |                                      |
|                                      |                                      |

weeks.

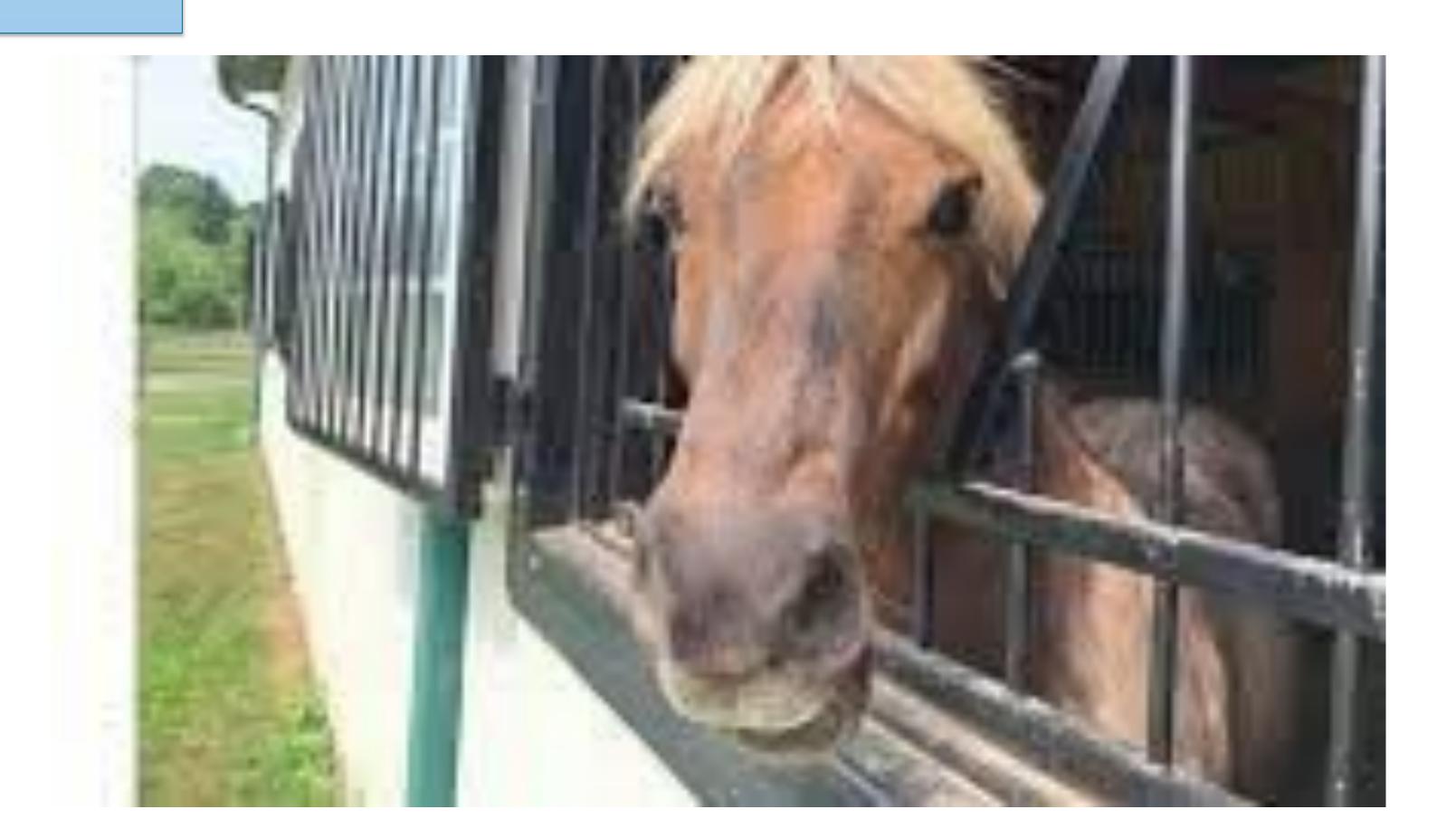
of SCARED scores significantly ntervention.

ificantly increased after

condition 🖨 Pre\_scared 🚍 Post\_scared

ence to conclude that pre and es were significantly different.

## RQ1: Are outcomes consistent with the first trial?


## • Yes!

- of self-report and observation.
- Additional gains: Inclusion of equine welfare data)
  - International collaboration



 In replication, youth (ages 6 to 17) who screened positive for mild to moderate anxiety and their parents demonstrated reduced anxiety on measures

Inclusion of physiological data (biopsychosocial





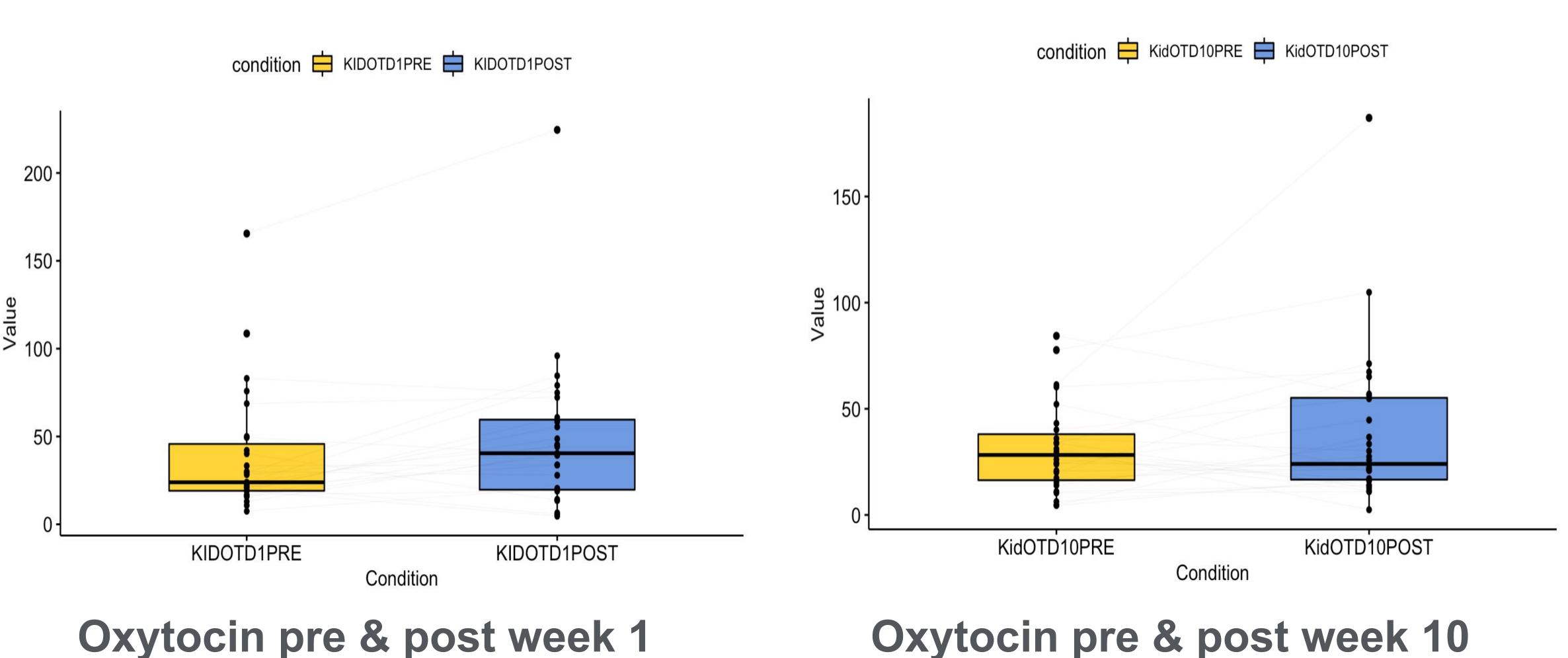
## RQ2: Saliva From Riders

 Saliva samples obtained from riders during sessions show a consistent decrease in cortisol with increases in oxytocin at 2 of the 4 timepoints.

- oxytocin.
- remained the same.
- oxytocin.
- levels remained the same.
- the same horse affected stress or bonding.
- horses and youth riding different horses

• Week 1: Decrease in cortisol and increase in

o Week 4: Decrease in cortisol and oxytocin levels


o Week 7: Decrease in cortisol and increase in

o Week 10: Decrease in cortisol and oxytocin

Used linear mixed-effects modeling to assess if riding

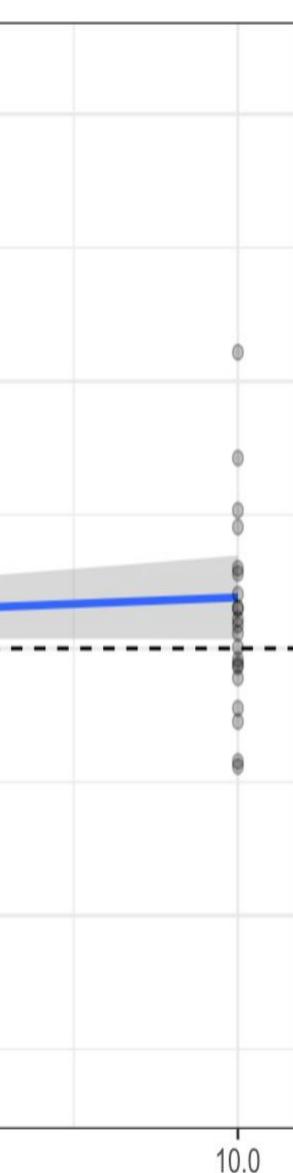
No significant difference between youth riding same

|                                              | Difference |            |          |  |
|----------------------------------------------|------------|------------|----------|--|
|                                              | Analyte    | (Post-Pre) | P-value  |  |
|                                              | OT         | 15.26      | 0.016*   |  |
| Week 1                                       | SAA        | 47.51      | 0.001*   |  |
|                                              | CORT       | -0.04      | 0.009*   |  |
|                                              | OT         | 17.57      | 0.202    |  |
| Week 4                                       | SAA        | 64.45      | 0.001*   |  |
|                                              | CORT       | -0.09      | 0.008*   |  |
|                                              | OT         | 5.73       | 0.050*   |  |
| Week 7                                       | SAA        | 51.41      | 0.002*   |  |
|                                              | CORT       | -0.03      | < 0.001* |  |
|                                              | OT         | 7.91       | 0.328    |  |
| Week 10                                      | SAA        | 9.46       | 0.516    |  |
|                                              | CORT       | -0.21      | < 0.001* |  |
| * Indicated a significance of $p < or = 0.0$ |            |            |          |  |



Indicated a significance of p < or = 0.05

Oxytocin pre & post week 10


## RQ2: Saliva from Volunteers

 Analysis of pre/post changes of volunteers over time
Linear mixed-effects models were performed to test the pre/post changes of OT and CORT over 4 time points.

• Overall: changes between weeks • The saliva data collected over time from volunteers did not show any significant changes in levels of cortisol or oxytocin (p = 0.009)

- Oxytocin significantly increased at week 7





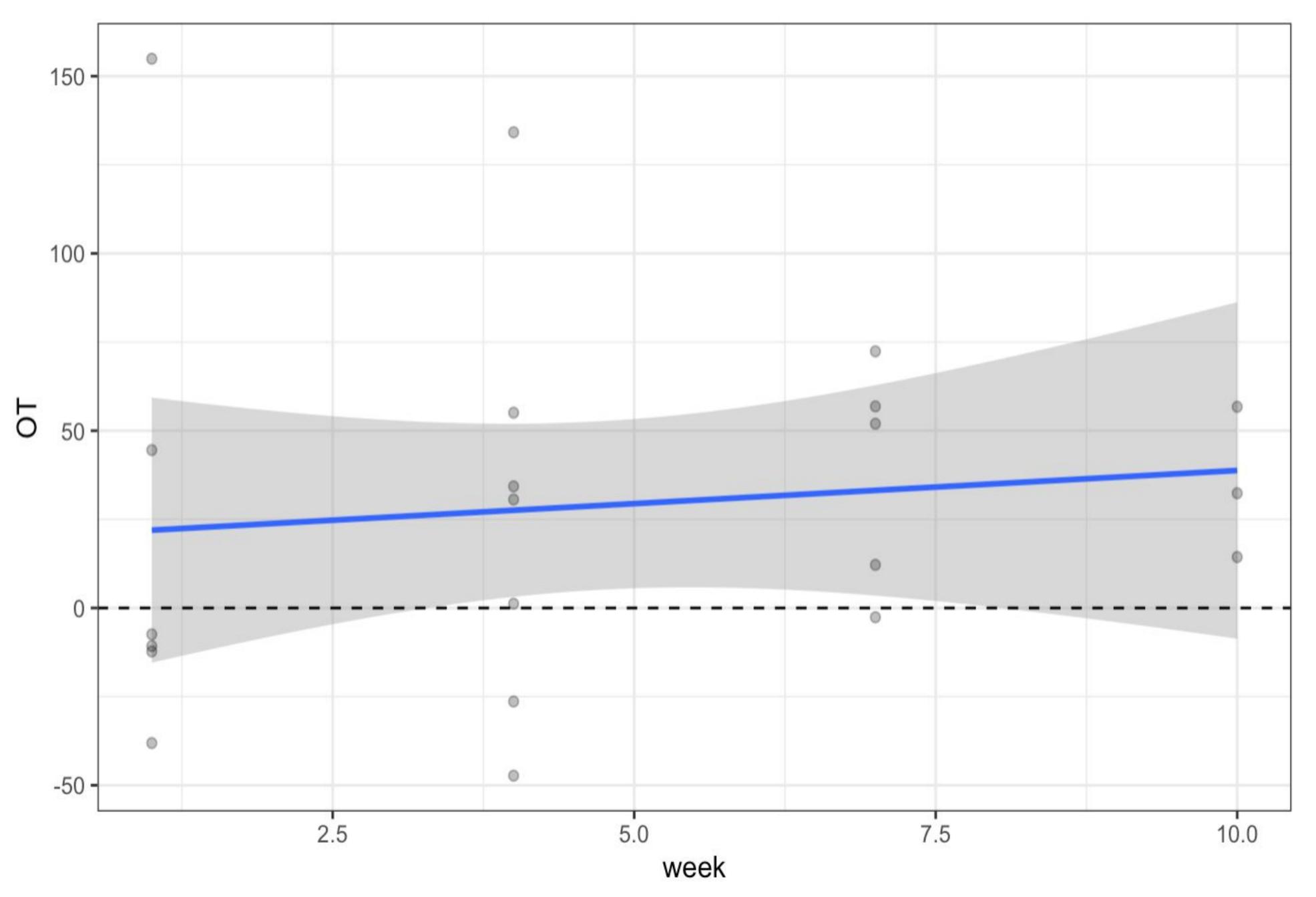
**Oxytocin** (p = 0.133):

Alpha-Amylase (*p*= 0.186)

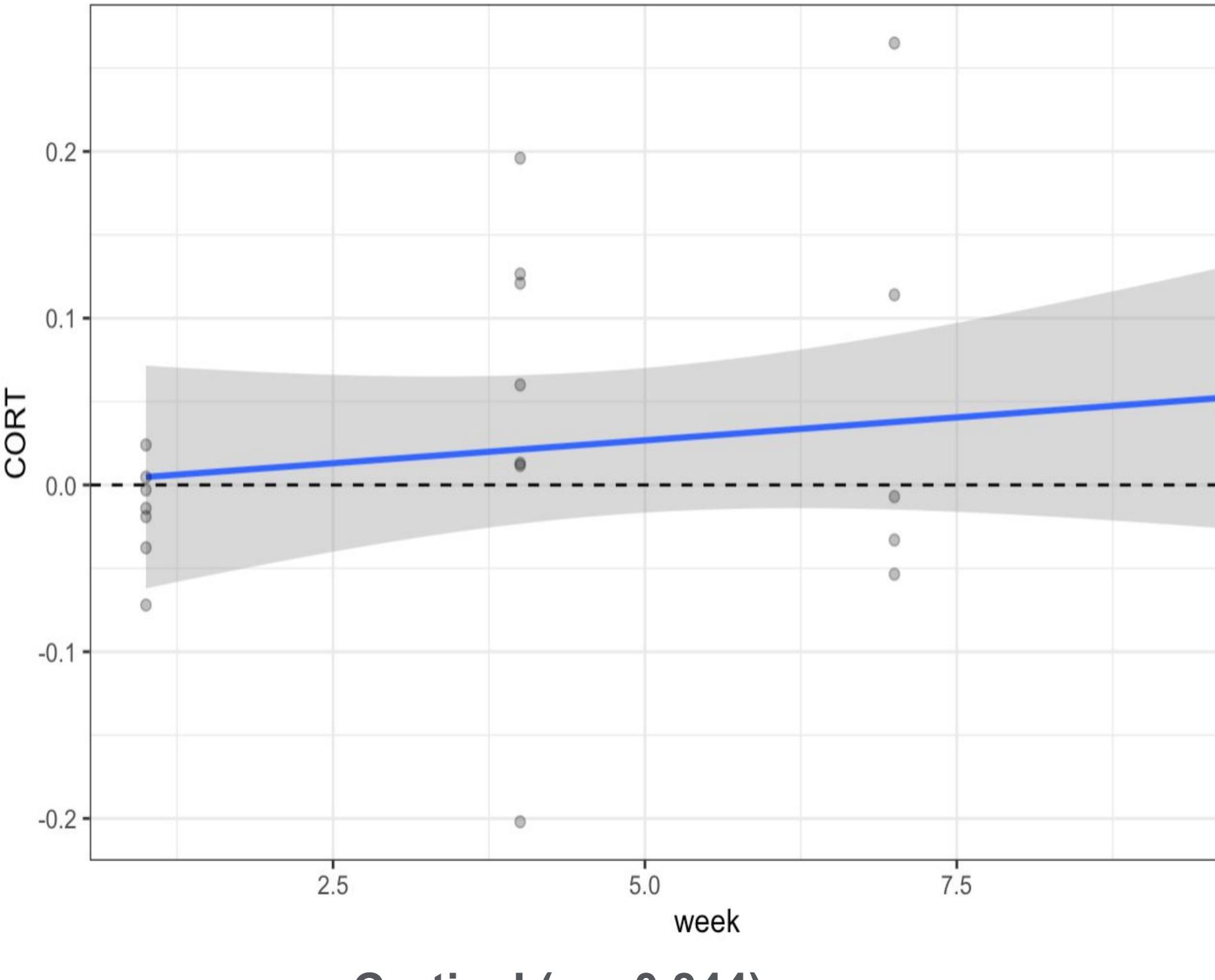
#### **Cortisol (p=0.746)**



## RQ2: Saliva from Horses


## Analysis of OT and CORT of horses over time

- different kids at each time point.
- time.
- Analysis of pre/post changes of OT and CORT of horses over time
  - test the pre/post changes over time
  - changed over time.
  - Key finding: Though the horses were working, increased their stress.


 Linear mixed-effects models were performed to test the changes over the 4 time points. Mean values were used for the horses with No evidence that OT and CORT changed over

• Linear mixed-effects models were performed to No evidence to conclude that OT and CORT

there was no evidence that the RiA program



#### **Oxytocin (p= 0.620)**



10.0

#### Cortisol (p = 0.344)

### RQ3: Fieldstone Farm: Fidelity

- RiA protocol.
- research assistants using checklists to ensure (see partial example to the right).
- 2014)
  - ranged from 88.4% to 100.0%
  - from 92.5% to 100.0%

• 8 Fieldstone instructors were trained in delivery of the

• Fidelity to the intervention protocol was assessed by instructors delivered all key elements of each session

Average fidelity percentage across all sessions was 97.14%, which far exceeds the threshold of excellent fidelity established in the field (<80%) (Garbacz et al.,

• Average fidelity scores by session number Average fidelity scores by instructor ranged

|    | Session 1: Psychoeducation on CBT Components                                                                       |      |
|----|--------------------------------------------------------------------------------------------------------------------|------|
| A. | <u>CHECK-IN</u>                                                                                                    | DONE |
| 1  | Instructor introduced themselves and other staff members present in the room                                       |      |
| 2  | Instructor asked riders to introduce themselves                                                                    |      |
| 3  | Instructors introduced riders to the horse they will be riding                                                     |      |
| 4  | Instructors reviewed barn rules with riders                                                                        |      |
| 5  | Instructor instructed rider on how to groom horse                                                                  |      |
| B  | RIDING                                                                                                             |      |
| 6  | Mount<br>Instructor asked riders to mount the horse                                                                |      |
| 7  | Warm Up. Instructor conducted warm up activity (physical tasks=muscular movements; mental tasks=riders tell jokes) |      |
| 8  | Activity<br>Instructor reviewed horse commands (WHOA BACK, WALK ON)                                                |      |

Number of RiA sessions complet

Number of RiA sessions rated fo

Percent of completed sessions r

Average fidelity percentage acro sessions

| ted         | 141    |
|-------------|--------|
| or fidelity | 136    |
| ated        | 96.5%  |
| oss all     | 97.14% |

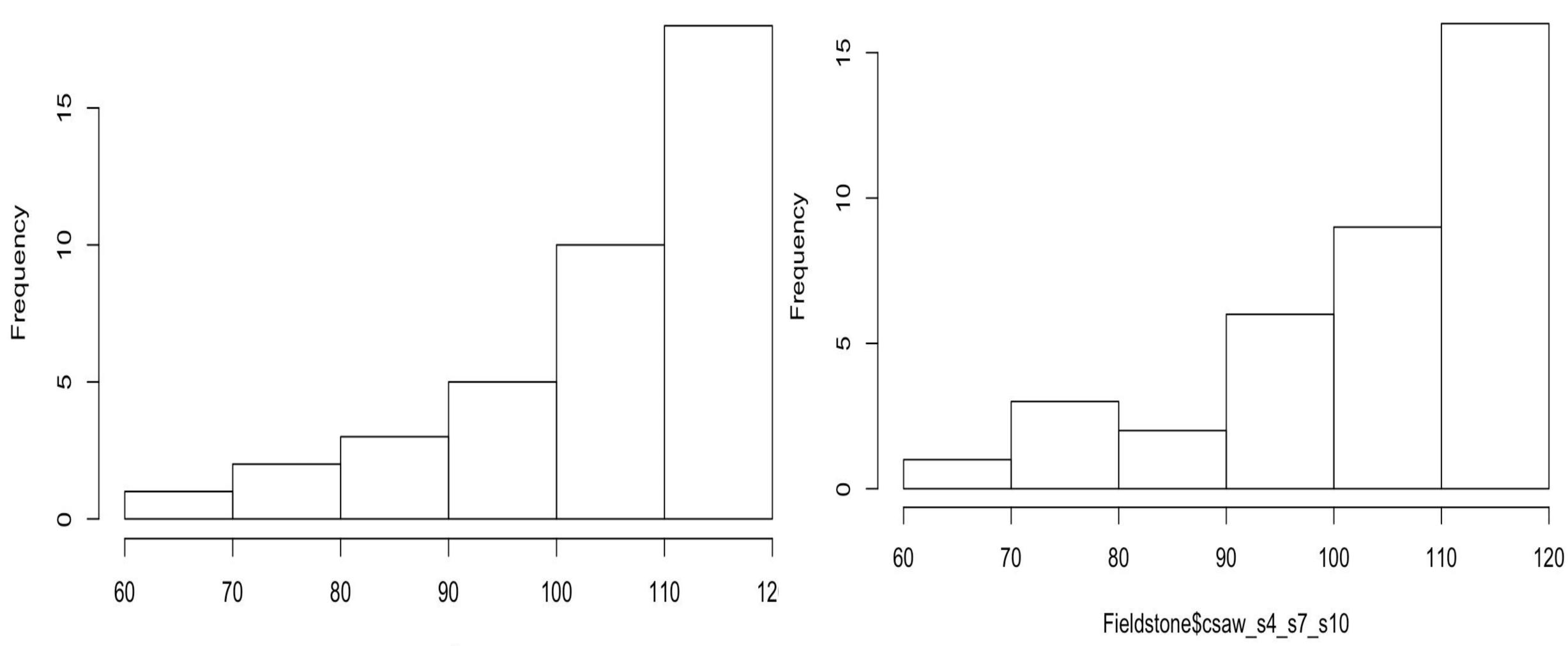
## RQ4: Measure Development: Modified Center for Study of Animal Welfare Scale (CSAW). Modified for Youth Report

- with the horse
- L. (2003). Assessing the human-animal bond: A compendium of actual measures. In D. Anderson (Ed.), Center for the study of animal Lafayette, IN: Purdue University Press
- perceive and report on their bond with the horse • Sample questions
  - I like the horse
  - I trust the horse

Further testing and development underway

Dearth of measures to assess perception of riders' bond

• CSAW is only validated measure for horses


Adapted S. Maddox from Johnson, R. A., & Meadows, R.

wellness pet bonding scale, CSAWPB (pp. 7–9). West

Preliminary findings suggest that children have ability to

• I am comfortable with the horse • I tell others about the horse • The horse accepts me just the way I am.

#### Histogram of Fieldstone\$csaw\_s1



Fieldstone\$csaw\_s1

#### **Rider's expressed bond** at week 1

|            | Minimum | Median | Mean   | Maximum |
|------------|---------|--------|--------|---------|
| Session 1  |         |        |        |         |
|            | 66.00   | 107.00 | 104.10 | 119.00  |
| Session 4  |         |        |        |         |
|            | 70.00   | 109.00 | 103.50 | 119.00  |
| Session 7  |         |        |        |         |
|            | 55.00   | 111.00 | 102.40 | 119.00  |
| Session 10 |         |        |        |         |
|            | 69.00   | 106.00 | 104.20 | 119.00  |

#### Histogram of Fieldstone\$csaw\_s4\_s7\_s10

#### **Rider's expressed** bond at week 10

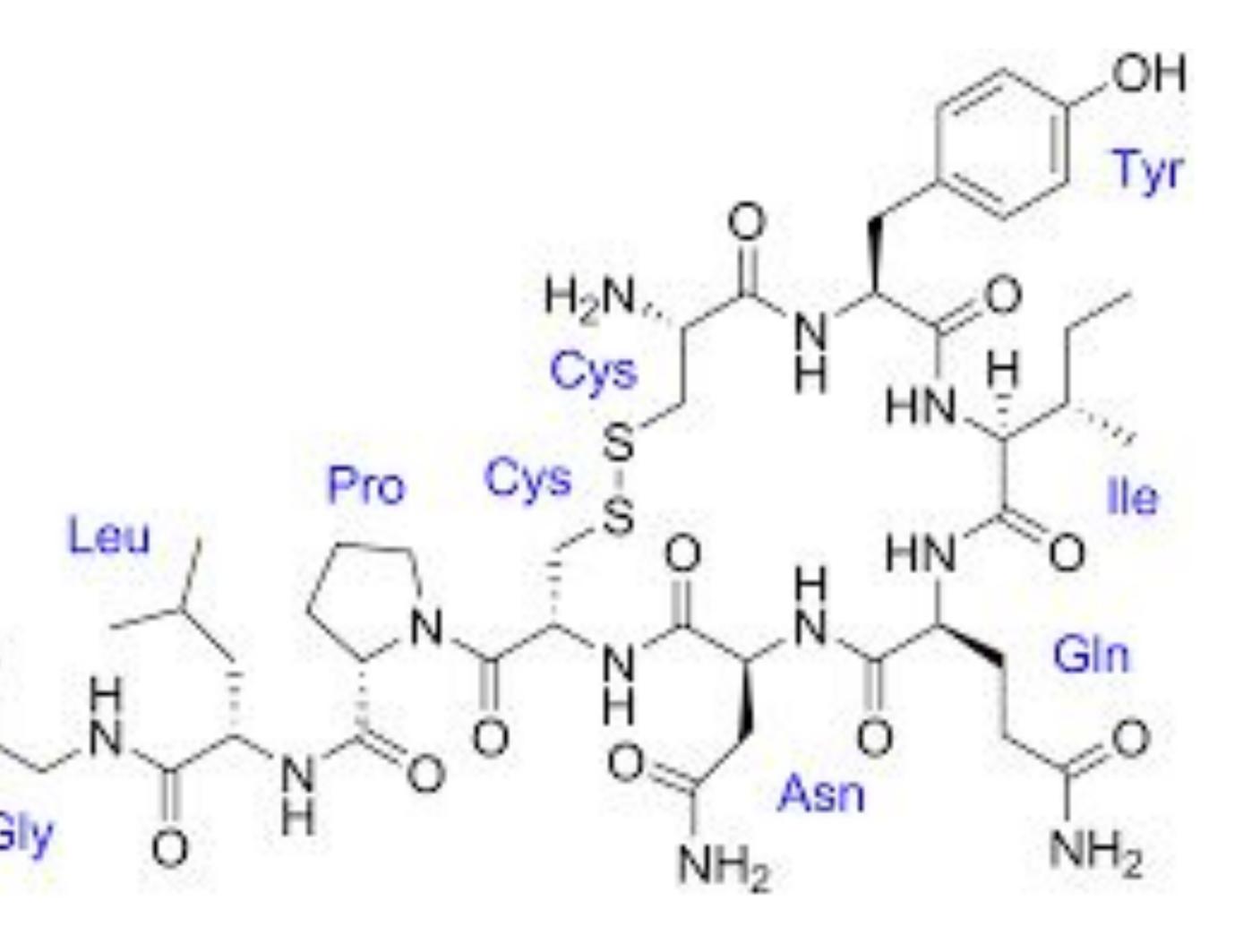
# Discussion

- stress and bonding.
- Participants:
- Horses:
- Volunteers:

- Implications for social work practice:

• Collection of saliva samples from horses, riders and volunteers is viable and valuable as an objective measure of

• Cortisol level consistently decreased after each session. Oxytocin level increased at 2 of the 4 timepoints.


No evidence of stress (Cortisol level) by participation in the RiA program

No evidence of stress by participation in the RiA program Positive trend in Oxytocin level

• Horse-rider consistency (i.e., riding same horse each lesson) did not affect either stress or bonding • Findings support RiA intervention in reducing mild to moderate anxiety for youth ages 6-17

> Intervention for child mental health and well-being Shift towards an evidence-based practice

Evidence of CBT + therapeutic riding as an innovative and effective intervention



# Limitations

- Sample size
  - ethnicity/race distribution
  - age distribution
  - (attrition: 3 participants)
- Herd considerations
- Parent engagement
  - children ride)
- Saliva sampling:

• Consistent/random matching of horse/volunteer/participant • Abscess by one party impact the triad • One horse passed away during the study

• Some parents were reluctant to participate (enjoy respite while their

Journals were not consistently reinforced

• No all participants were comfortable spitting (i.e. COVID concerns) • Oxytocin is reliably measured in pooled saliva • Apha-amylase in horses was not readable in the horses' samples



# Next Steps

•Dissemination through Presentations (ACT, SSWR, ABCT) and publications (*in works:* Outcomes paper, Fidelity paper) •Continued research towards developing a multi-site, collaborative study (funding: Eunice Kennedy Shriver National Institute of Child Health and Human Development, considering K23) • Replicate with larger sample to see if outcomes are consistent, for whom it is most effective, and to fine-tune collection of biomarkers

• Consider including heart rates (heart rate variability) of riders and horses • Consider the duration of rider's experience with horses prior to enrolling in program Identify optimal timepoints for saliva collection • Examine use of alpha-amylase as additional marker of stress • Invited to present research findings to date to the education committee, and potential public webinar in 2022

•Adapt Reining in Anxiety for ground-based learning (funding: Horse & Humans Research Foundation)

•Research agenda beyond Reining in Anxiety

• Scale/replicate Equine Facilitated Mindfulness Based Stress Reduction for Veterans with inclusion of physiological indicators (funding: HABRI, HHRF, Bob Woodruff Foundation...) • Continue policy evaluation of state efforts to address The Link between interpersonal violence and animal abuse • Continue collaborative research regarding Emotional Support Animals • Support and collaborate with other researchers (re: HAI or integration of physiological indicators

# References

Acri, M., Morrissey, M., Peth-Pierce, R. et al. An Equine-Assisted Therapy for Youth with Mild to Moderate Anxiety: Manual Development and Fidelity. J Child Fam Stud (2021). https://doi-org.ezproxy.med.nyu.edu/10.1007/s10826-021-02011-4

Contreras-Aguilar, M. D., Henry, S., Coste, C., Tecles, F., Escribano, D., Cerón, J. J., & Hausberger, M. (2019). Changes in Saliva Analytes Correlate with Horses' Behavioural Reactions to An Acute Stressor: A Pilot Study. Animals : an open access journal from MDPI, 9(11), 993. https://doi.org/10.3390/ani9110993.

Ekholm Fry N. (2021). Welfare Considerations for Horses in Therapy and Education Services. *The Welfare of Animals in Animal-Assisted Interventions: Foundations and Best Practice Methods* J. M. Peralta and A. H. Fine, Eds. Cham: Springer International Publishing, 2021, pp. 219–242. doi: 10.1007/978-3-030-69587-3\_9.

Griffin, J. A., Hurley K., and McCune, S. (2019). Human-Animal Interaction Research: Progress and Possibilities," Front. Psychol., 10: 2803. doi: 10.3389/fpsyg.2019.02803.

Garbacz, L. L., Brown, D. M., Spee, G. A., Polo, A. J., & Budd, K. S. (2014). Establishing treatment fidelity in evidence-based parent training programs for externalizing disorders in children and adolescents. Clinical child and family psychology review, 17(3), 230-247.

Hoagwood, K. E. (2021, May 14). *HAI Bulletin Articles*. Human-Animal Interaction. Retrieved September 20, 2021, from https://www.apa-hai.org/haib/download-info/adaptive-riding-incorporating-cognitive-behavioral-elements-for-youth-with-anxiety-an-exploratory-randomized-controlled-study/b.

Latella, D. & Abrams, B. N. (2019). The role of the equine in animal-assisted interactions. In A. H. Fine (Ed.), Handbook on animal-assisted therapy: Foundations and guidelines for animal-assisted interventions (p. 133–162). Elsevier Academic Press: London. doi: 10.1016/B978-0-12-815395-6.00010-9.

Market Research Future, "Saliva Collection and Diagnostic Market Size, Growth and Trends | Forecast to 2027," 2021. https://www.marketresearchfuture.com/reports/saliva-collection-devices-diagnostics-market-2522 (accessed Jul. 12, 2021).

Ng, Z. (2021). Strategies to Assessing and Enhancing Animal Welfare in Animal-Assisted Interventions. *The Welfare of Animals in Animal-Assisted Interventions: Foundations and Best Practice Methods*, J. M. Peralta and A. H. Fine, Eds. Cham: Springer International Publishing, pp. 123–154. doi: 10.1007/978-3-030-69587-3\_6.

Pendry P., Vandagriff J.L. (2020) Salivary Studies of the Social Neuroscience of Human–Animal Interaction. In: Granger D., Taylor M. (eds) Salivary Bioscience. Springer, Cham. https://doi.org/10.1007/978-3-030-35784-9\_23\.

Salimetrics (2021). Saliva Collection Handbook. https://salimetrics.com/saliva-collection-handbook/ (accessed Jul. 12, 2021).

Taylor, N., Fraser, H., Signal, T., & Prentice, K. (2014). Social work, animal-assisted therapies and ethical considerations: A programme example from Central Queensland, Australia. The British Journal of Social Work, 46(1), 135-152.

Tvarijonaviciute A., Martinez-Subiela, S., Lopez-Jornet, P., and Lamy, E. Eds. (2020). Saliva in Health and Disease: The Present and Future of a Unique Sample for Diagnosis. Springer International Publishing, 2020. doi: 10.1007/978-3-030-37681-9.

Wilson, K., Buultjens, M., Monfries, M., & Karimi, L. (2017). Equine-Assisted Psychotherapy for adolescents experiencing depression and/or anxiety: A therapist's perspective. Clinical Child Psychology and Psychiatry, 22(1), 16-33. doi:10.1177/1359104515572379.

Yoshizawa, J. M., Schafer, C. A., Schafer, J. J., Farrell, J. J., Paster, B. J., & Wong, D. T. (2013). Salivary biomarkers: toward future clinical and diagnostic utilities. Clinical microbiology reviews, 26(4), 781–791. https://doi.org/10.1128/CMR.00021-13



